XenoSotaAgent

An agent submitted to the ANAC 2025 SCM league

Sota Sakaguchi, Takanobu Otsuka Nagoya Institute of Technology, Aichi, Japan

Outline

- 1 Introduction
 - 2 Proposed Method
 - 3 System Design
 - Partner Scoring
 - Allocation Strategy
 - Concession Strategy
 - 4 Experimental Results
 - 5 Conclusion

1. Introduction

Goal in Supply Chain Management(SCM)

- Minimization of penalties (e.g., excess inventory, contract violations)
- Maximization of profit

Challenges

- Transparency of partners
 - Each agent negotiates with its own independent strategy
 - For efficient contract formation, data on past negotiation patterns and agreement tendencies are required
- Uncertainty of demand and supply
 - The ability to adjust allocation and contracts appropriately is essential
 - Forecasting errors may lead to excess inventory or contract violations, resulting in penalties
- Securing stable profit
 - Negotiations involve multiple factors (quantity, delivery time, and unit price) that are intricately interrelated
 - If proposal and concession strategies are poorly designed, it may lead to unfavorable contracts and unstable profits

2. Proposed Method

Three Key Components

1. Partner Scoring

- Record offer history
- Evaluate partners quantitatively using success rate and agreement utility

2. Allocation Strategy

- Allocate target contracts considering inventory, production capacity, and partner scores
- In early steps, secure more buy contracts to reduce the risk of stockouts

3. Concession Strategy

- Evaluate quantity, delivery time, and unit price using a utility function
- Generate optimal offers based on utility and make strategic concessions as negotiation rounds progress

3.1 System Design: Partner Scoring

- Key Idea
 - Quantify partner reliability and reflect it in negotiation strategies
- Usage
 - Used in allocation and proposal strategies
 - Prioritize contracts with reliable partners
- Process

Offer History

Record partner's offers & agreements

Success Rate/ Agreement Utility

Success Rate:

- Ratio of successful negotiations Agreement Utility:
 - Utility of weighted average of past agreements(recent ones weighted more)

Partner Score

Average of Success Rate &
Agreement Utility

3.2 System Design: Allocation Strategy

Key Idea

Allocate daily needs efficiently based on inventory, capacity, and partner scores

Details

- Determine available supply for the day from inventory and production capacity
- Assign target contracts to each partner according to partner scores
- Avoid bottlenecks in the early stage of the simulation
 - Since inventory starts at zero, contract fulfillment is unstable in the initial steps
 - Secure more buy contracts(about twice as usual) in early steps to stabilize inventory

Role in Agent

- Avoid penalties caused by stockouts
- Prioritize contracts with reliable partners
- Reduce the risk of contract violations

3.3 System Design: Concession Strategy

Key Idea

 Based on a utility function, gradually reduce the acceptance threshold in each negotiation round and make stepwise concessions

Role in Agent

- Ensure stable profit while reducing the risk of negotiation failure
- Reflect multiple factors(quantity, delivery time, unit price) under a unified utility-based framework

Concession Flow

- Best Offer
 - The offer with maximum utility for the agent
- 2. Acceptable Offer
 - The minimal offer that still satisfies the acceptance threshold in the current round
- Base Offer
 - A practical offer created by combining Best and Acceptable offers(element-wise)
- 4. Least Concession Offer
 - An offer derived from Base by changing one issue only, minimizing the utility drop(used for concession rounds)

3.3 System Design: Concession Strategy

4. Experimental Results

Experimental Setup

- Environment:
 - SCML 2025 Standard
- Conditions:
 - step = 10, process = 3, config = 4
- Baselines:
 - SimpleSyncAgent: A basic agent with simple negotiation rules
 - ProactiveAgent: An agent with proactive behavior including randomness
- Metric:
 - Comparison of each agent's score in terms of Mean / Std / Min / Max

4. Experimental Results

Results

- XenoSotaAgent significantly outperformed the baselines with higher average score
- Achieved stable performance with a smaller variance
- Reached a higher maximum score than ProactiveAgent
- Minimum score was lower than SimpleSyncAgent, showing occasional downturns

Table1: Results table

Agent	Mean	Std	Min	Max
XenoSotaAgent	1.15	0.17	0.53	1.54
SimpleSyncAgent	0.63	0.26	0.72	1.00
ProactiveAgent	0.67	0.40	-0.65	1.46

5. Conclusion

Discussion

- Partner Scoring, Allocation Strategy, and Concession Strategy contributed to stable profits
- Still room for improvement in reducing performance downturns and enhancing stability

Future Work

 Enhance stability and flexibility by improving the utility function and introducing adaptive learning