
Supply Chain Management League (OneShot)

Automated Negotiating Agents Competition

SCML Organizing Committee:

Y. Mohammed, A. Greenwald, K. Fujita, M. Klein, S. Morinaga, S. Nakadai

March 18, 2025

Abstract

This document describes the Automated Negotiation Agent Competition (ANAC) Supply Chain
Management League OneShot track (SCML-OneShot). The game is intended to further research on
agent negotiation. As such, the game design emphasizes negotiation and de-emphasizes operations (e.g.,
production, scheduling, etc.).1

N.B. There are two tracks in SCML 2025. This document pertains only to the OneShot track.

1 Overview

The SCM OneShot world simulates a supply chain consisting of multiple factories that buy raw materials
from, and sell final products to, one another. The factories are managed by autonomous agents. These
agents are assigned a target quantity (drawn at random) to either buy or sell. They then negotiate with
other agents to reach agreements, which become binding contracts that specify the terms of trade.

A simulation comprises multiple days, during each of which the OneShot game is played. All agents have
the same goal each day, namely to turn a profit. The agent with the highest total profit summed over all
days, and then averaged across multiple simulations, wins. Learning is permitted from one day to the next
during a single simulation; however, learning is not permitted across simulations.

Products There are three product types: a raw material, an intermediate product, and a final product.

Production There are two manufacturing processes, one for converting the raw material into the inter-
mediate product, and a second for converting the intermediate product to the final product.

Factories Factories convert input products into output products by running their manufacturing processes
on their production lines. All processes run convert exactly one unit, instantaneously, at a predefined cost.

Production Graph Factories are organized in two layers L0 and L1 (see Figure 1). L0 factories receive
exogenous contracts to buy the input (raw material), and then negotiate with L1 factories to sell them the
intermediate product. L1 factories receive exogenous contracts to sell their output (final product), and then
negotiate with L0 factories to buy the intermediate product.

1A shorter game overview is available here.

1

http://www.yasserm.com/scml/overview_oneshot.pdf
http://www.yasserm.com/scml/overview_oneshot.pdf

Exogenous
Supply

(Buy Contracts)

Exogenous
Demand

(Sell Contracts)

Closed Bilateral
Concurrent

Negotiations

Figure 1: SCML-OneShot world. Each factory is represented by an agent, whose goal to negotiate buy and
sell contracts that maximize profits.

Agents The agents in the SCM world function as factory managers. They negotiate to reach agreements
to buy and sell the intermediate product, which automatically become binding as contracts.

Negotiation Protocol Agreements are negotiated using a variant of the bilateral alternating offers
protocol, typical of ANAC competitions [?, ?]. Each offer specifies a buyer, a seller, a quantity, and a unit
price. The sequences of offers and counteroffers in a negotiation are private to the negotiating parties.

Utility Functions An agent’s utility function represents its profits. As such, it is simply the total revenue
it receives from any sales less its total expenses, the latter of which includes the contracted cost of the input
product as well as the agent’s private production costs, disposal costs, and shortfall penalties.

N.B. While each agent’s production costs, disposal costs, and shortfall penalties are private information,
the distributions from which these values are sampled are common knowledge.

Trading Price The trading price (tp) of a product is a weighted average of its past prices, which weighs
newer contract prices more heavily than older ones. The trading price is used by the simulator to set the
price range of all negotiations, and for calculating penalties.

Balances Factories have an associated balance—seeded at the start of the game with some finite amount—
from which they withdraw to pay for supplies, etc., and into which their sales revenue is deposited.

Bulletin Board The SCM world contains a world-readable bulletin board (see Figure 2) that conveys
both static and dynamic information about the game environment and all factories over the course of the
simulation.

The static information includes the simulator settings (e.g., number of simulated days), and product
information, namely a list of the consumers and producers of all products (i.e., all factory’s positions in the
production graph), and the initial trading prices (called catalog prices).

The dynamic information includes a trading price list (per product), which reports a weighted average of
each product’s past prices; and a financial reports section (also per agent), which is updated only periodically,
that summarizes the financial standing of all factories (e.g., their balances).

Finally, the bulletin board also contains an exogenous contract summary, which reports the total
quantity and average unit price of exogenous contracts each day.

The Simulation Each simulation of the SCM world runs for multiple (say, 100) days. Before the first
day, each agent is assigned a production cost. During each day:

1. The world generates exogenous contracts, and samples disposal costs and shortfall penalties for all
agents from their corresponding distributions.

2

Bulletin Board

Day

Breach
Level

0 0.1

0 0.3

1 0.2

Breach List

Day
Assets

Balance

Breach Level

Breach Prob

Bankrupt?

12 0 100$ 0 0 no

12 0 - 2,5$.1 .2 yes

24 0 80$.1 .3 no

23 0 -101$.5 .8 yes

Financial Reports

Product

Catalog
Price

Trading
Price

Exogenous
In/O

ut
Today

Sellers

B
uyers

22 7.5 16/
0

85 99 0/
12

Products

Settings

Setting

Value

n.
steps

500

Time
Limit

6000

….. ….

Figure 2: The bulletin board includes Simulator Settings, Product Information (includes trading prices,
catalog prices, and exogenous contract summaries), Financial Reports, and the Breach List.

2. Agents engage in multiple (say, 20) rounds of negotiations with their negotiating partners. They can
also read the bulletin board.

3. All contracts are executed: i.e., products are moved from the seller’s inventory to the buyer’s, and
money is moved from the buyer’s account to the seller’s.2

4. The bulletin-board is updated, most notably to reflect new trading prices, updated financial reports,
and the day’s exogenous contract summaries.

Differences from SCML 2024 The SCML OneShot 2025 game has the same rules as SCML OneShot
2023 and 2024. This year we provide a framework for building RL agents for the competition. Using this
framework is not required but will probably make life easier for people intending to use RL for their agents.

2 Game Entities

We start by describing the components of the SCM world, namely the environment and the agents. By the
environment, we mean the manufacturing structure—what can be manufactured and how. By the agents,
we mean autonomous entities that make decisions about what to buy and what to sell.

2.1 The Environment

The manufacturing structure of an SCM world—what can be manufactured and how—is represented by a
production graph. This graph comprises a set of products P and a set of manufacturing processes
M , and specifies which inputs and processes are used to produce which outputs.

Although the SCM world supports directed acyclic graphs,3 the production graph used in OneShot is a
chain, with but one raw material, one intermediate product, and one final product. Correspondingly, there
are two manufacturing processes, each one advancing the product one level in the chain. These manufacturing

2Contracts are executed in order, starting from the raw material and ending with the final product. Production is run in
the same order, which guarantees the accuracy of the utility functions. (See Equation 5.)

3See http://www.yasserm.com/scml/scml.pdf (Chapter 1) for a detailed description of the space of manufacturing structures.

3

http://www.yasserm.com/scml/scml.pdf

2.2 Agents: The Decision-Makers

processes are instantaneous in OneShot. They transpire as soon as all the day’s negotiations end, at which
point all resulting products are delivered (instantaneously) as well.

Each factory in the SCM world operates at exactly one of the two levels in the chain, running one of the
two manufacturing processes on its various production lines. In OneShot, all factories are endowed with the
same number of lines (λ),4 but product costs vary across levels, and across factories/manufacturing processes
at the same level in the chain. In all SCML tracks, production becomes more and more costly, on average,
the closer a product comes to being finished.

2.2 Agents: The Decision-Makers

Manufacture and trade in the SCM world are directed by autonomous, decision-making agents, who function
as factory managers. As such, at the start of a simulation, each agent is assigned a single factory to
manage. The factory that agent a manages is announced publicly, but each factory’s manufacturing profile,
most importantly the cost ma of running its manufacturing process, is private information, known only to
its factory manager (i.e., the agent).

As agents/factories in OneShot do not accrue inventory, agents that overprovision incur disposal costs at
the end of a day, while agents that underproduce incur shortfall penalties. In addition to its manufacturing
profile (i.e., the number of lines, the manufacturing process, and the production cost), an agent’s private
profile also contains four parameters indicative of its disposal costs and shortfall penalties, namely the mean
and standard deviation of a normal distribution corresponding to each. Each day, a particular disposal cost
and shortfall penalty is sampled from these distributions.

Each agent/factory is also assigned an initial balance at the start of the game (i.e., an initial endowment)
that it can spend buying inputs and paying for production. This initial balance is the same for all the
factories at a given level in OneShot, so it is known with certainty to all factory managers at this level,
but not to their trading partners at adjacent levels. Throughout a simulation, the only state that agents
maintain from one day to the next is their balance.

3 Negotiation

At a high-level, negotiating to reach an agreement proceed as follows:

1. Every day one negotiation is started between every L0 agent and every L1 agent. Negotiation proceeds
via the alternating offers protocol (see Section 3.1).

2. If the negotiation successfully reaches an agreement, that agreement is binding.

3.1 Mechanism

The negotiation mechanism adopted by SCML 2023 [?] is a variant of Rubinstein’s alternating offers proto-
col [?]. It involves two agents, who take turns making offers for a finite number of rounds and/or seconds.
One agent opens the negotiation with an offer, after which the other agent takes one of the following actions:

1. Accepts the offer

2. Responds with a counteroffer, thus rejecting and overriding the previous offer

3. Walks away, thus declaring an end to the negotiation, without having reached an agreement

4In future iterations of the game, a single factory may be operate at multiple levels in the chain, and/or be capable of
running different manufacturing processes on its various production lines (even at the same level).

4

3.2 Data Structures

This process repeats until either an agreement or a deadline is reached. To reach an agreement, one party
must accept the offer proposed by its partner. If no agreement is reached by the deadline, the negotiation
fails5.

All negotiations in the SCM world must be completed within a fixed number of rounds (e.g., 100) and
within a fixed amount of time (e.g., 2 minutes). Additionally, each agent has a fixed amount of time (e.g.,
10 seconds) in which to respond to an offer or propose a new one.

Note that anything pertaining to negotiations between agents is private information. No other agents
except those negotiating see any intermediate offers or responses, nor any final agreed-upon contracts.

Important features to keep in mind about negotiations in SCML:

• All negotiations at a given day proceed in one direction. This means that either all negotiations are
opened by the offer from L1 agents or all of them are opened by offers from L0 agents.

• It is not guaranteed that the opening agent will be the same everyday. This means that some days L1

agents will start all negotiations and in some other days L0 agents will start all negotiations.

• You should not assume that all negotiations proceed at the same speed. This means that a negotiation
between agent A and B can be on round 10 while another between agent A and agent C can be on
round 5 6.

3.2 Data Structures

A negotiation agenda ν is a tuple (pν , qν), where:

Negotiation Issues All negotiations (between L0 and L1 agents) have the following issues:

Unit Price an integer between ⌈κ tp(s)⌉ − 1 and ⌈κ tp(s)⌉, where κ > 0 is a configuration parameter
and tp(s) is the trading price of the intermediate product (see Section 4)7.

Quantity an integer between 1 and λa (where λa is the number of lines in factory a).

An offer o is a tuple (po, qo) consisting of a unit price po and a quantity qo. Note that the precise value
of each issue must be precisely specified in an offer; offers cannot include any ranges.

A contract c is a tuple (sc, bc, oc, . . .), where

Seller sc ∈ A The seller agent (an L0 agent).

Buyer bc ∈ A The buyer agent (an L1 agent).

Offer oc The agreed upon offer.

An exogenous contract is a contract in which one of the buyer or the seller is the simulator. Each
exogenous input contract issued to an L0 agent a includes a quantity of the raw material constrained not to
exceed λa, and its unit price. Exogenous output contracts issued to L1 agents are similar in structure, but
pertain to the final product rather than the raw material.

5In SCML 2021, negotiators did not know which of them would initiate the negotiation because a random offer from one of
them was dropped at the first round. Since SCML 2022, the standard alternating offers protocol is used with no such measures.

6In SCML 2023, it is the case that all negotiations proceed at the same speed though.
7This is the only difference between 2023 and 2022 versions of SCML OneShot. In 2023, the price range is guaranteed to

be small (only 2 values) which means that the main determining factor in achieving high score is being able to match the total
quantity bought and sold. Moreover, the value of κ will be around one which means that trading prices are not expected to
change much from catalog prices.

5

3.3 Bankruptcy and Contract Breaches

3.3 Bankruptcy and Contract Breaches

All contracts in OneShot are binding. Moreover, agents honor all buy contracts, whether or not they have
sufficient funds. Likewise, they honor all sell contracts, whether or not they have the requisite input products,
or the funds to cover production costs.

If, at the end of a day, an agent’s balance is negative (i.e., it did not have sufficient funds), it is declared
bankrupt. Bankrupt agents cannot engage in any further negotiations; their balance is frozen (at a negative
value) for the remainder of the simulation.

A breach occurs if ever an agent commits to selling more of a product during a day than it can produce,
either because of an insufficient quantity of input product or manufacturing lines. An agent that commits a
breach incurs shortfall penalties, which are intended to mimic the idea of an agent scrambling somehow to
make good on a promise.

N.B. Since all contracts are honored in OneShot, each agent’s utility function calculation is independent
of all the others’.

4 Utility Functions

An agent’s utility function represents its profits. As such, it is simply the total revenue it receives from any
sales less its total expenses, the latter of which includes the contracted cost of the input product as well as
the agent’s private production costs, disposal costs, and shortfall penalties.

In this section, we present the decision problem embedded in computing an agent’s profits, which is
used to determine which buy and sell contracts the agent can satisfy, given its finite balance and limited
production capabilities. We then explain how how these decisions feed into the agent’s utility.

At the start of each day, each agent is issued an exogenous contract. Moreover, at the end of each day,
each agent will have a set of negotiated input and output contracts. We refer to the set of negotiated input
(output) contracts together with the exogenous input (output) contracts for agent a as C in

a (Cout
a).

Decision Problem Because agent a can only buy what it can afford, and its balance ba is finite, we define
the set of satisfiable input contracts C∗in

a =
{
(pc, q

∗in
c)

}
⊆

{
(pc, q

in
c)

}
= C in

a that minimize costs as follows:

C∗in
a ∈ argmin

C̃in⊆Cin
a

∑
c∈C̃in

pcq
∗in
c

s.t. q∗inc ≤ qinc ,∀c ∈ C̃ in∑
c∈C̃in

(pc +ma)q
∗in
c ≤ ba

(1)

The variable q∗inc denotes the optimal quantity of the input product that it is feasible for a to buy to satisfy
contract c, subject to the constraint that this quantity is producible, meaning the agent does not spend more
than its balance buying its total producible quantity and converting its inputs to outputs.

Calculating C∗in
a is actually easy. It can be accomplished greedily by sorting all input contracts in

ascending order by price, and then inserting them into C∗in
a as long as the balance constraint is not violated.

Note that only the quantity of the last satisfied contract c in the sorted list is potentially less than qinc .
We write Q∗in =

∑
c∈C∗in

a
q∗inc to denote the total quantity of the input product the agent considers

buying and converting into outputs, as a result of executing this greedy algorithm. Similarly, we write
Qin =

∑
c∈Cin

a
qinc to denote the total quantity of the input product the agent contracted to buy.

Because agent a can only sell what it can produce, we define the set of satisfiable output contracts

6

C∗out
a ≡ {(pc, q∗outc)} ⊆ {(pc, qoutc)} = Cout

a that maximize revenue as follows:

C∗out
a ∈ argmax

C̃out⊆Cout
a

∑
c∈C̃out

pcq
∗out
c

s.t. q∗outc ≤ qoutc ,∀c ∈ C̃out∑
c∈C̃out

q∗outc ≤ λa

∑
c∈C̃out

q∗outc ≤ Q∗in

(2)

The variable q∗outc denotes the optimal quantity of the output product that it is feasible for a’s factory to
produce to satisfy contract c, subject to two constraints, which together ensure that a does not produce
beyond its means: 1. it cannot produce a quantity greater than its number of lines; and 2. it cannot produce
a greater quantity of output product than its total producible quantity of input product, which we take to
be the optimal quantity Q∗in a can afford to produce, as per Equation 1.

Calculating C∗out
a is also easy. It can be accomplished greedily by sorting all output contracts in descend-

ing order by price, and then inserting them into C∗out
a as long as the constraints are not violated, with (as

above) only the quantity of the last satisfied contract c in the sorted list potentially less than qoutc .
We write Q∗out =

∑
c∈C∗out

a
q∗outc to denote the total quantity of the output product the agent produces

and sells, as a result of executing this greedy algorithm. Similarly, we write Qout =
∑

c∈Cout
a

qoutc to denote
the total quantity of the output product the agent contracted to sell.

Putting it all together, the decisions made via this two-step greedy approach to deciding what to buy
(among all buy contracts) and what to sell (among all sell contracts) comprise C∗out

a and Q∗out.

Penalties As all agents in OneShot buy all input products Qin, they may be left with excess inventory
when Qin > Q∗out. Similarly, as agents sell all output products they manage to produce (Q∗out), they
experience a shortfall when Qout > Q∗out. Agents incur penalties in their utilities based on the differences
between the amount they contracted to buy (sell) and the amount they actually buy (produce/sell):

Qexcess
a = max{0, Qin −Q∗out} (3)

Qshortfall
a = max{0, Qout −Q∗out} (4)

Utility Function Agent a’s utility ua can now be defined as a’s profits, i.e., its revenue less its costs and
its penalties:8

ua(C
in
a , Cout

a) =
∑

c∈C∗out
a

pcq
∗out
c︸ ︷︷ ︸

revenue

−
∑

c∈Cin
a

pcq
in
c −ma Q

∗out

︸ ︷︷ ︸
costs

−
(
αa tp(ρ

in
a , d)Qexcess

a + βa tp(ρ
out
a , d)Qshortfall

a

)︸ ︷︷ ︸
total penalties

,

(5)
where ρina and ρouta are factory a’s input and output products, respectively, and tp(ρ, d) is the trading price
of product ρ on day d, defined below.∑

c∈C∗out
a

pcq
∗out
c The total revenue it earns by selling its outputs.∑

c∈Cin
a
pcq

in
c The total cost it incurs to buy its inputs.

ma Q
∗out
a The production cost. Note that factories produce exactly what they can sell on the current day,
as inventory does not carry over from one day to the next.9

8The term in red, namely Cin
a , indicates that agents buy all inputs they contracted to buy.

9Equation 1 ensures that the agent can produce output products corresponding to all its input products, but Equation 5
assumes production of only those output products the agent sells.

7

αa tp(ρ
in
a , d)Qexcess

a The total buy-side penalty, which is incurred on any output products that are not
sold. Note that these penalties depend on the trading price of the input product.

βa tp(ρ
out
a , d)Qshortfall

a The total sell-side penalty incurred by the factory for failing to deliver its output
product. Note that these penalties depend on the trading price of the output product.

Trading Prices The trading price (tp) for product ρ at the beginning of day d is calculated as follows:

trading price(ρ, d) ≡ tp(ρ, d) =
γd Q−1(ρ) cat(ρ) +

∑d−1
i=0 γd−i Qi(ρ) µi(ρ)

γd Q−1(ρ) +
∑d−1

i=0 γd−i Qi(ρ)
, (6)

where cat(ρ) is the catalog price of product ρ, γ ∈ [0, 1] is a discount factor (trading price discount factor),
Q−1(ρ) is a weight representing the effective quantity that is represented by the catalog price (prior catalog
price quantity), Qi(ρ) is the total quantity of product p traded on day i (in contracts executed even partially
on that day), and µi(ρ) is the average price per item at which product p traded on day i. More specifically,

Qi(ρ
′) =

∑
{c∈Ci|c.ρ=ρ′}

c.q̄ and µi(ρ
′) =

∑
{c∈Ci|c.ρ=ρ′} c.q̄ × c.p

Qi(ρ′)
,

where Ci is the set of all agreements reached on day i, c.ρ is the product traded via contract c, c.p is the unit
price of contract c, and c.q̄ is the actual quantity exchanged (which is less than the agreed upon quantity
whenever a breach occurs).

5 Information

Some of the information in an SCML simulation is private to the agents to which it is germane (e.g.,
balances), while other information is public (e.g., trading prices). Moreover, some of the private information
is summarized for public consumption periodically.

5.1 Private Information

All negotiations and ensuing contracts are private to the parties involved. All agents’ profiles are also private.
In OneShot, these profiles are characterized by five numbers: production cost, and the mean and standard
deviation of disposal costs and the shortfall penalty.

Additionally, an agent’s state information is private. This state includes the agent’s current account
balance, its current disposal costs and shortfall penalty, and its exogenous contracts.

5.2 Public Information

The SCM world maintains a bulletin board that broadcasts all public information. Some of this information
is static, such as the simulator settings (see Table 1). Other information is dynamic.

The simulator publishes three types of dynamic information on the bulletin board regularly: the market’s
status, the agents’ status (in the form of financial reports), and the breach list.

Market Status The simulator publishes the following market statistics on the bulletin board at the end
of every simulation day for each product:

Exogenous Contract Summaries The total quantity and average price across all exogenous contracts.

Trading Prices The current trading price (See Equation 6), which is a weighted sum of past trading prices.

8

Financial Reports The simulator also publishes information about each agent’s financial status every
reporting period days. These reports include the agent’s current balance, the value of its inventory (which
is always zero in OneShot), whether or not it is bankrupt,10 and two indicators of its past breaches:

Breach probability The fraction of the agent’s contracts that it has breached thus far in the simulation.

Breach Level The agent’s breach level averaged across all days. The breach level on any given day is
calculated as (Qs−Qp)/Qs, where Qs is the total quantity the agent committed to selling and Qp is the
total quantity it can produce.

Breach List Finally, the simulator publishes a list of all breaches committed by all agents each day. Each
entry in this list is an agent name and its breach level that day.

6 Simulation Steps

Update trading prices

Create exogenous contracts and sample agent’s disposal cost, and shortfall penalty

Initialize agents for the day
• before_step() [First call every day]

Run All Negotiations
• propose() respond() | on_neg*_success() on_neg*_failure()

Calculate profits for all agents by simulating contract execution.

Finalize agents for the day
• step() [Last call every day]

Publish Financial Reports

Initialize all agents
• init()

u

K
Y8

4

4

4

Once

Every
Day

Figure 3: Order of execution of events during a simulation.

All SCM agents implement an initialization function and a step function. The former is called by the
simulator to initialize agents’ behavior, before day zero.11 After initialization, the simulator repeats the
following loop every day, which calls the agents’ step functions, among other things (see Figure 3):

1. Update all products’ trading prices as per Equation 6.

2. Assign each agent an exogenous contract for this day. (See Appendix B.)

10Unlike in the standard SCML world, there is no need in OneShot to notify agents immediately about another agent’s
bankruptcy, or liquidate (e.g., via a spot market) and compensate others, because there are never any outstanding contracts.

11Following NegMAS, and to be consistent with most programming languages, the first simulation day in SCML is day zero.

9

3. Assign each agent a a disposal cost αa and a shortfall penalty βa. Each is sampled from a per-agent
normal distribution (see Table 2).

4. Call all agents‘ before-step functions in an unspecified order.

5. Run all negotiations until completion. Successful negotiations are binding. Exogenous contracts are
also binding.

6. Calculate each agent’s profits (i.e., utility) using Equation 5 and add the ensuing amounts to the
corresponding agents’ balances.

7. Call the agents’ step functions in an unspecified order.

8. Publish financial reports, a summary of recent exogenous contracts, and trading prices (every report-
ing period days).

7 The SCML Platform

SCML runs on top of NegMAS [?], which is a Python framework for developing autonomous negotiation
agents embedded in simulation environments.

7.1 Negotiators

A negotiator is an entity that conducts negotiations on behalf of an agent. All negotiators must implement
the following interface:

Propose Proposes an offer, which is an assignment of values to all negotiation issues.

Respond Either accepts, rejects, or ends the negotiation, in response to an offer.

Negotiators are dynamic entities created by an agent for the purpose of negotiating a contract on its behalf.
Two types of negotiators are supported:

1. Empowered negotiators are full-on decision makers. They are assigned a utility function when they
are created, and they use their utility function to make offers and respond to others’ offers.

2. Pass-through negotiators merely pass offers and counteroffers through to the agent that created them.
Decision making is therefore wholly the responsibility of the creating agent, which is called a controller.
A controller typically manages multiple negotiators, deciding how to propose and respond for all of
them. Together, controllers and pass-through negotiators can be used to implement a centralized
negotiation strategy.

7.2 Agents (Factory Managers)

An agent (also called a factory manager) controls a factory in the SCM world.

Callbacks Agents can implement a variety of callbacks. The simulator calls them at appropriate times
during the simulation. The callbacks starting withOn need not return anything; they are merely informative.
Other callbacks require the agent to take some action (e.g., respond to a negotiation request, etc.).

The first two callbacks are called by the simulator’s main loop:

Init Called after the world is initialized, but before the simulation begins.

Befor Step Called in the simulation loop at the beginning of the day after exogenous contracts are created
and ufuns are constructed and before any other calls to the agent.

10

Step Called in the simulation loop at the end of the day after all other calls to the agent are completed.

The next callback is event driven; it are triggered by the event its names suggest:

On Negotiation Success/Failure Called when a negotiation the agent is involved in terminates.

Actions Agents can gather information about their factory and other agents using the following methods:

Get State Reads the factory state.

Bulletin Board Access the bulletin board to read simulation settings (e.g. number of days, current day),
product information, breach list, financial reports, exogenous contract summaries, and trading prices.

8 Tournament Mechanics

To participate in the Supply Chain Management League (SCML), you should write and submit code for an
autonomous agent that acts as a factory manager.

In the OneShot track, at most one instantiation of each agent will run in each simulation, together with
an unknown mix of additional agents prepared by other participants and by the organizing committee. An
agent’s performance will be measured by its score, which will be computed as the truncated mean12 of the
utilities (i.e., profits) accrued by all the factories it is assigned to manage across all simulations. The profit
accrued by an agent during one day in one simulation is calculated according to Equation 5.

All tournaments will be conducted in two rounds, a qualifying round and a final round. All entrants that
are not judged to break any of the SCML and ANAC submission rules will be entered into the qualifying
rounds. Top-scoring agents in the qualifying round will then be entered into the final round.

The final results will be announced at AAMAS 2024. It is expected that finalists will send a representative
to the ANAC session (at IJCAI 2024), where they will have the opportunity to present their agent.

A Simulation Parameters

The behavior of the simulator is controlled by the following hyperparameters. In this list, we first describe
the hyperparameter, and then indicate its variable name in the SCML code base (in parentheses).

Number of simulation days (n steps) ∈ Z+
∞ The maximum number of simulation days in a single run.

Total simulation time (time limit) ∈ ℜ+
∞ The maximum number of seconds in a single run.

Reporting period (reporting period) The number of days between periodic financial reports.

Negotiation rounds limit (neg n steps) ∈ Z+
∞ The maximum number of rounds in a negotiation.

Negotiation time limit (neg time limit) ∈ ℜ+
∞ The maximum number of seconds in a negotiation.

Offer Time Limit (neg step time limit) ∈ ℜ+
∞ The number of seconds between acceptable offers. If an

offer is not received within this time limit, the negotiation ends.

Negotiation speed multiplier (negotiation speed) ∈ Z+
∞ The number of rounds in a negotiation per

simulation day.

Table 1 lists the simulator parameters and their settings for SCML 2021 OneShot.

12An agent’s truncated mean will be calculated by first sorting that agent’s scores in all the simulations, and then removing the
top and bottom xt and xb scores from that agent’s sorted list, where xt and xb are values selected by the organizing committee
to balance test efficiency (taking into account scores from as many simulations as possible) and robustness (insensitivity to
outliers, or to a few simulations in which the agent realizes extremely high or low profits).

11

Table 1: Simulator parameter settings for SCML 2021 OneShot.

Setting Value Notes

Number of simulation days (S) 50 < S < 200 Based on available computational resources.
Total simulation time (in seconds) 7200 Two hours
Reporting period 5
Negotiation Settings
Negotiation rounds limit 20
Negotiation time limit (in second) 120 Two minutes
Offer time limit (in seconds) 10
Negotiation speed multiplier 21 All negotiations end the day they begin.
Negotiation Agenda Settings
Trading price parameters γ = 0.9, Q−1(p) = 50 Control the evaluation of trading prices.
Price multiplier κ ∼ U(1.5, 2.0) The negotiation price issue factor, multi-

plied/divided by current trading prices to set
the limit.

B World Configurations

An SCML-OneShot tournament comprises multiple simulations, each one characterized by a world config-
uration, which in turn comprises the following:

1. A two-level supply chain, which consists of exactly three products and two corresponding manufacturing
processes.

2. Some number of factories at both levels in the chain, with an assignment of agents (i.e., factory
managers) to each factory.

3. Factory profiles such that each factory is characterized by some number of lines (λ, constant across
all factories in OneShot 2021), a production cost ma, an initial balance bl, which is constant across all
factories at the same level in the chain in OneShot 2021.

4. Exogenous buy contract parameters for the raw material and exogenous sell contract parameters for
the final product.

5. Utility function parameters, including a mean and a variance, for all agents, of their disposal cost and
shortfall penalty distributions.

All of the above configuration settings are determined by parameters that appear in Table 2, with the
exception of the last (utility function parameters), which are described in Table 3.

The following is a simplified13 sketch of the process used to generate a OneShot world configuration:

• Sample the simulator parameters listed in Tables 2 and 3.14

• Generate catalog prices for each product ρ (produced at level l = ρ − 1) as the sum of the input and

production costs: for all ρ ∈ {1, . . . , L+ 1}, cpρ = (cpl + µρ) (1 + πl), where µρ = 1
|A|l

∑|A|l
a=0 ma.

• Set the total number of active lines per process/level on all days d ∈ [0, S − 1], given the production
capability factor (productivity per process) ηl(d), to be Al(d) = ⌊λl ηl(d)⌋. Consequently, the total
production capacity for product ρ (produced at level l = ρ − 1) on day d is Qρ(d) = min{Ql(d −
1), Al(d)}, for all ρ ∈ {1, . . . , L+ 1}, and Q0(d) = A0(d).

13See the SCML2020OneShotWorld.generate() method for more details.
14U denotes the uniform distribution and N , the normal distribution.

12

Table 2: Simulator parameters for SCML world generation. We write l for manufacturing process/production
level, ρ for product, a for agents/factory managers, and d for days.

Setting Distribution Notes

Number of processes (levels) L = 2 Number of processes/levels. The ac-
tual number will depend on the num-
ber of participants, and will vary be-
tween simulations.

Number of factories per process (level) l |A|l ≥ 4, for all l ∈
{0, . . . , L}

Number of factories that can execute
each process. The actual number will
depend on the number of participants,
and will vary between simulations.

Production cost at process (level) l ml ∼ l × U [1, 10] Production costs increase with level.
They are higher for intermediate prod-
ucts closer to the finished product, and
lower for those closer to the raw mate-
rial.

Profit per process (level) l πl ∼ N (U [0.1, 0.2], 0.05) The profit achievable if all factories
exchanged products at catalog prices
and produced at maximum capacity,
assuming they all incurred the average
production cost.

Productivity per process (level) l ηl(d) ∼ U [0.8, 1.0], for all
d ∈ {0, . . . , S − 1}

The fraction of production lines per
process that are assumed occupied
when generating the configuration
(sampled independently for each pro-
cess and day).

Number of lines per factory a λa = 10 Number of lines per level λl =∑|A|l
a=0 λa.

Raw material catalog price cp0 = 10 Raw material catalog price, on which
all other catalog prices depend.

Cash availability ξ ∼ U [1.5, 2.5] When ξ > 1, the cash injected into
the simulator beyond a base amount,
which is what would be required for
each factory to execute its manufac-
turing process to produce an average
quantity assuming average production
costs and catalog prices.

Price relative std. dev. per product ρ σρ ∼ U [0.1, 0.2] The fraction of the mean that yields
the standard deviation from which ex-
ogenous contract prices are sampled.

13

Table 3: Parameters for OneShot utility function generation. All of these paramters are per agent.

Setting Distribution Notes

Production costs ma ∼ U [ml, 4×ml] Per-agent production costs
Disposal Cost Distributions† µα

a ∼ U(0.0, 0.2)
Per-agent disposal cost distributions

σα
a ∼ U(0.0, 0.02)

Shortfall Penalty Distributions† µβ
a ∼ U(0.2, 1.0)

Per-agent shortfall penalty distributions
σβ
a ∼ U(0.0, 0.1)

Day d’s disposal costs and
shortfall penalties

αa(d) ∼ N (µα
a , σ

α
aµ

α
a) Sampled per agent per day

βa(d) ∼ N (µaβ , σ
β
aµ

β
a)

† If sampled disposal costs or shortfall penalties are negative, the corresponding absolute value is used instead,
which amounts to slightly increasing the probability of small values for each.
• Utility function parameters are subject to change.

• Compute the endowments for the factories at level l (producing product ρ = l + 1) as follows: for all
l ∈ {0, . . . , L− 1},

bl = ξ

(
cpl + µρ

|A|l

) S−1∑
d=0

Qρ(d)

This initial balance is intended to be sufficient so that each factory can cover the cost of producing
an average quantity of the product at its level for the duration of the simulation, even if it never sells
anything. More specifically, in this calculation, each factory is assumed to buy Qρ(d)/|A|l inputs at
catalog prices cpl, and produce that same quantity of outputs at an average cost µρ, each and every
day of the simulation. For ξ > 1, this design ensures that the average factory will not go bankrupt,
although it does not guarantee the same for any particular agent.

• The total quantity of the raw material across all exogenous buy contracts with a delivery date on day
d is Q0(d), and the total quantity of the finished product across all exogenous sell contracts with a
delivery date on day d is QL(d). These totals are divided among the corresponding factories randomly,
but in such a way that the fraction of exogenous contracts assigned to one factory relative to others at
the same level remains consistent throughout a simulation. For example, one agent may have quantities
hovering around 4, and another around 6, across all days in the simulation.

The price is sampled from a normal distribution with mean equal to the product’s catalog price cpρ and
standard deviation σρcpρ. With the current settings, in which σρ ∼ U [0.1, 0.2], the standard deviation
will be somewhere between 10% and 20% of the mean for each product.

C Tournament Generation

This section describes the process of running a tournament in more detail. Note, however, that these details
are subject to change without notice.

Note: You can safely skip this section if you are not interested in these details. The main takeaway is:
when you design your agents, you should not make any assumptions about the other agents in the world.

We start by differentiating between two concepts:

Basic Configuration A world configuration up to the assignment of agents to factories.

Assigned Configuration A basic configuration with all factories assigned to agents (i.e, factory managers)—
that is, a world configuration.

We assume a set of C competitors denoted by C = {0, . . . , C − 1}. In general, the number C is smaller
than the number of submitted agents, as not all submitted agents will participate in all simulations. On the

14

contrary, the tournament will be run in a round-robin fashion, with, for example, C = 3, so that only three
submitted agents partake in each simulation. The remaining agents, if any, will be default agents designed
by the SCML organizing committee. These default agents are designed to facilitate trade, and are included
in the round robin to create a fair competition among various combinations of submitted agents.

We denote by Ai the number of copies of competitors (i.e., agents) of type i ∈ C included in any given
simulation. Note that Ai is 1 in the OneShot track.

A basic configuration is generated as follows:

1. Simulation parameters are set as described in Section 6.

2. Number of factories controlled by each agent in every simulation Ai is set to 1.

3. Number of levels/processes L is set to 2 (i.e. number of products is set to 3).

4. For each process/production level (l), draw a number of factories/agents |A|l ∼ U(2, x), where x is
selected such that |A|lL ≥ AiC.

5. Generate the rest of a basic configuration, given L and |A|l, as per Appendix B.

6. Select AiC of the factories and call them the assignable factories. Partition this set into C sets of
factories, B0, . . . , BC−1, each of cardinality Ai.

Now that we have a basic configuration and a partition of the assignable factories, we generate Ai copies
of each agent type i. The factory sets in the partition are then randomly matched with the agent types:
e.g., agent type i might be assigned to factory set Bi, for all agent types i ∈ C. The result of this process is
a world configuration, which is simulated until completion K ≥ 1 times.

The assignment of agent types to factory sets is then rotated one step (i.e., factories assigned to agent
type i are assigned to agent type i+ 1 mod C), and the world is simulated again with this new assignment
another K times. This process is repeated C times ensuring that every agent type is assigned to every
factory set in the partition, and that each such assignment is simulated K times.

Let’s walk through an example to clarify this process. Assume three competing agents (i.e., agent types),
A0, A1, and A2, are participating in the competition, so let’s create one copy of each type. Now assume a
world of 8 factories, distributed over three levels, L0, L1, and L2, with three factories at level 0; and five at
level 1. We select one factory for each agent to control at random. For example, B0 = {0, }, B1 = {1, },
and B2 = {6, }, with five factories (2,3,4,5,7) leftover, to be assigned to the organizing committee’s agents.
Now the first set of K simulations will assign B0 to A0, B1 to A1, and B2 to A2; the second will rotate this
assignment, so that B0 is assigned to A1, B1 to A2, and B2 to A0; and the third will rotate this assignment
again, so that B0 is assigned to A2, B1 to A0, and B2 to A1.

The number of basic configurations and the number of simulations of each assigned configuration will
be determined based on available computational resources. However, as per the aforementioned process,
the number of assigned configurations for each basic configuration will always be equal to the number of
competitors, C. If the number of submitted agents is actually C, not 3, and the competition is run with M
agent types present in each simulation, not 3, then this process will be repeated

(
C
M

)
times, for each possible

choice of M agents among C competitors, leading to KM
(
C
M

)
= C!K

(M−1)!(C−M)! simulations for each basic

configuration. 15

15The number of agent types per simulation (M) can range between 2 and C.

15

	Overview
	Game Entities
	The Environment
	Agents: The Decision-Makers

	Negotiation
	Mechanism
	Data Structures
	Bankruptcy and Contract Breaches

	Utility Functions
	Information
	Private Information
	Public Information

	Simulation Steps
	The SCML Platform
	Negotiators
	Agents (Factory Managers)

	Tournament Mechanics
	Simulation Parameters
	World Configurations
	Tournament Generation

