ANAC 2025 ~ ANL ~ a4e Agent Kazuma Mochizuki Tokyo University of Agriculture and Technology ## Concept - Adaptation and Flexible Response to Opponents - Analyze the cooperation / Assessing the risks - Update my strategy performance based on negotiating opponents - Balance with Cooperation and Competition - Determine target utility and strategy (Nash / Individual / Hybrid) - Use adjusted acceptance thresholds for each strategy ## Coordination estimate_opponent _utility ID, Strategy, Risk, Utility_history adaptation_rate=0.2 # Strategy ~ Bidding ~ calc_level (based on the negotiation progress) #### [Calculate the Utility Level] - Determine [target utility / agent's aspiration level] for the current turn e.g high utility(strong) in the early stages, low utility(concessions) in the late one - PolyAspiration curve (default "boulware" [e < 1]) - Start with maximum(1.0), decrease over time - At the last stage, the level is 0.2 to avoid a negotiation breakdown ## select_optimal_strategy (1) T = relative time, R = risk • Initial stage (T < 0.3) if cooperative: **Nash** else : **Individual** • Middle stage ($0.3 \le T < 0.7$) $\begin{cases} if \ above_RiskTH(R > 0.2): \textbf{Best} \\ else \end{cases} \begin{cases} if \ cooperative: \textbf{Nash} \\ else: \textbf{Individual} \end{cases}$ • Late stage ($T \ge 0.7$) if $high_R(R > 0.5)$: Individual else: Hybrid # Strategy ~ Bidding ~ ## select_optimal_strategy (2) #### execute_nash_strategy (Cooperative) : - Select the outcome that satisfies the utility threshold (95% of the current level) - Select from the candidates with the highest Nash product (my utility × estimate_opponent_utility) #### execute_individual_strategy (Competitive): - Prefer outcomes with high utility for my agent - make aggressive proposals to maximize my utility - Target opponent's weaknesses - adjust to the opponent's tendency to compromise and weakness score #### execute_hybrid_strategy (using weighted utilities [nash_weight , individual_ weight]): - Adjust weights dynamically for Cooperative opponents (favoring Nash outcomes) - Select the outcome with the highest combined score # Strategy ~ Acceptance ~ #### **Proposal evaluation** Calculate the utility of the current_offer / Add the estimate_opponent_utility to opponent_utility_history ## respond - 1. Calculate the minimum acceptable utility (effective_level) for the current turn - Adjust the acceptance threshold depending on the strategy being chosen Nash (small concessions) If the Nash product is greater than 0.4, apply a bonus (0.1×level) and lower the threshold to encourage cooperative agreement. Individual (increase demands) Increase the threshold with aggression_ level($e.g.\ level \times (1 + 0.5 \times aggression)$) **Hybrid** (nash and individual) Lower the threshold depending on the weighting (nash_component and individual component) #### 2. Decide ACCEPT / REJECT ``` ∫ if effective_level > my_utility: ACCEPT else: REJECT ``` It can handle cases where the threshold is exactly met. (using reject_exactly_as_reserved)