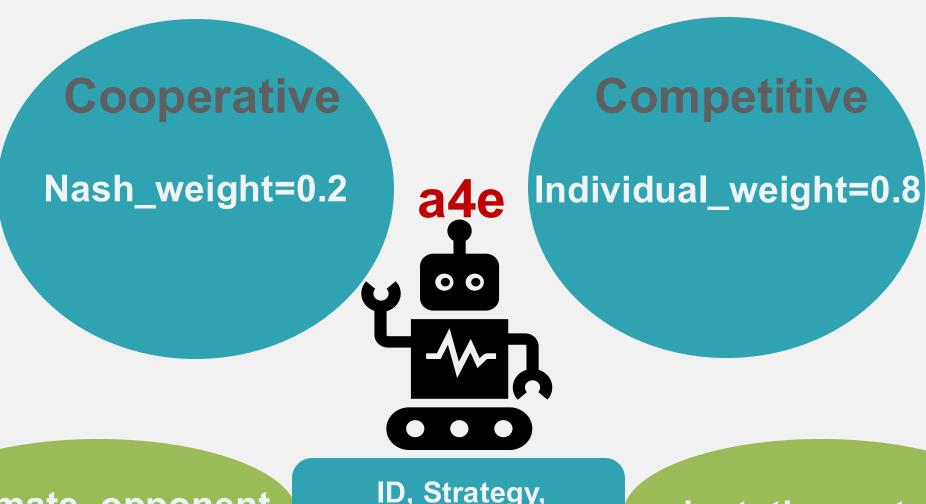
ANAC 2025 ~ ANL ~ a4e Agent

Kazuma Mochizuki


Tokyo University of Agriculture and Technology

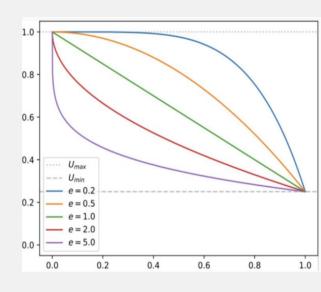
Concept

- Adaptation and Flexible Response to Opponents
 - Analyze the cooperation / Assessing the risks
 - Update my strategy performance based on negotiating opponents

- Balance with Cooperation and Competition
 - Determine target utility and strategy (Nash / Individual / Hybrid)
 - Use adjusted acceptance thresholds for each strategy

Coordination

estimate_opponent _utility ID, Strategy, Risk, Utility_history


adaptation_rate=0.2

Strategy ~ Bidding ~

calc_level (based on the negotiation progress)

[Calculate the Utility Level]

- Determine [target utility / agent's aspiration level] for the current turn
 e.g high utility(strong) in the early stages, low utility(concessions) in the late one
- PolyAspiration curve (default "boulware" [e < 1])
 - Start with maximum(1.0), decrease over time
 - At the last stage, the level is 0.2 to avoid a negotiation breakdown

select_optimal_strategy (1)

T = relative time, R = risk

• Initial stage (T < 0.3)

if cooperative: **Nash** else : **Individual** • Middle stage ($0.3 \le T < 0.7$)

 $\begin{cases} if \ above_RiskTH(R > 0.2): \textbf{Best} \\ else \end{cases} \begin{cases} if \ cooperative: \textbf{Nash} \\ else: \textbf{Individual} \end{cases}$

• Late stage ($T \ge 0.7$)

if $high_R(R > 0.5)$: Individual else: Hybrid

Strategy ~ Bidding ~

select_optimal_strategy (2)

execute_nash_strategy (Cooperative) :

- Select the outcome that satisfies the utility threshold (95% of the current level)
- Select from the candidates with the highest Nash
 product (my utility × estimate_opponent_utility)

execute_individual_strategy (Competitive):

- Prefer outcomes with high utility for my agent
- make aggressive proposals to maximize my utility
- Target opponent's weaknesses
- adjust to the opponent's tendency to compromise and weakness score

execute_hybrid_strategy (using weighted utilities [nash_weight , individual_ weight]):

- Adjust weights dynamically for Cooperative opponents (favoring Nash outcomes)
- Select the outcome with the highest combined score

Strategy ~ Acceptance ~

Proposal evaluation

Calculate the utility of the current_offer / Add the estimate_opponent_utility to opponent_utility_history

respond

- 1. Calculate the minimum acceptable utility (effective_level) for the current turn
 - Adjust the acceptance threshold depending on the strategy being chosen

Nash (small concessions)

If the Nash product is greater than 0.4, apply a bonus (0.1×level) and lower the threshold to encourage cooperative agreement.

Individual (increase demands)

Increase the threshold with aggression_ level($e.g.\ level \times (1 + 0.5 \times aggression)$) **Hybrid** (nash and individual)

Lower the threshold depending on the weighting (nash_component and individual component)

2. Decide ACCEPT / REJECT

```
∫ if effective_level > my_utility: ACCEPT
else: REJECT
```

It can handle cases where the threshold is exactly met. (using reject_exactly_as_reserved)