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Abstract
We propose CARC2025, a negotiation agent de-1

signed for one-to-many sequential multi-deal nego-2

tiations. As the central agent, it maximizes global3

utility across sub-negotiations by either decompos-4

ing the global problem into local optimizations5

(when the utility function is independent across6

sub-negotiations) or evaluating globally compatible7

joint bids when dependencies exist. As an edge8

agent, it employs time-based concession to bal-9

ance utility and agreement likelihood. All agents10

adopt a dynamic concession strategy that adjusts11

both with time and the agent’s position in the ne-12

gotiation sequence. An opponent modeling com-13

ponent further refines proposals by estimating the14

opponent’s preferences and utility trends, improv-15

ing agreement rates and overall performance.16

1 Introduction17

The Automated Negotiating Agent Competition (ANAC) Au-18

tomated Negotiation League (ANL) focus on developing au-19

tomated negotiation agents and strategies for diverse scenar-20

ios. The 2025 challenge focuses on sequential multi-deal21

negotiation, where a central agent engages in a sequence22

of bilateral negotiations with multiple opponents [Baarslag,23

2024]. The agent’s performance depends on the combined24

outcomes of all agreements. This setting extends prior work25

by emphasizing complex one-to-many interactions through26

sequential bilateral deals. The ANL will use the NegMAS27

platforms, a Python-based framework for automated negotia-28

tion research [Mohammad et al., 2021; Lin et al., 2014].29

This scenario introduces several significant challenges:30

• The need to coordinate offers and responses across mul-31

tiple sub-negotiations, ensuring coherent and mutually32

beneficial agreements.33

• Limited information about opponents, as the agent does34

not have prior knowledge of their preferences or strate-35

gies, requiring adaptive and robust negotiation strategy.36

Our Method. We propose CARC2025, a negotiation agent37

designed to maximize global utility across sequential sub-38

negotiations. As the central agent, CARC2025 dynamically39

adapts its strategy based on issue dependencies. When util- 40

ity depends on interdependent issues, we construct a joint bid 41

space consistent with past agreements to estimate the global 42

utilities for each candidate bid. These estimates guide bid 43

selection toward globally beneficial outcomes. 44

For edge agent, which optimize utility in a single sub- 45

negotiation, CARC2025 uses time-based concession strategy: 46

starting with a strict threshold and easing it as negotiation pro- 47

ceeds. 48

For both roles, agents use a dynamic concession strategy 49

that accounts for negotiation time and position in the se- 50

quence. An opponent modelling module is also employed 51

to predict preferences, allowing for adaptive bidding. 52

Paper Organization. The core ideas of sequential one- 53

to-many negotiation are introduced in Section 2. Section 3 54

presents the detailed strategy design for the center agent. Sec- 55

tion 4 describes the bidding and acceptance strategies for 56

edge agent. Experimental results and evaluations are reported 57

in Section 5. Finally, Section 6 concludes the paper. 58

2 Preliminary 59

2.1 Notations 60

Sequential multi-deal negotiation. In a one-to-many se- 61

quential negotiation with a fixed order [Aydoğan et al., 2017], 62

there exists a central agent, denoted as C, and N edge agents, 63

denoted as E1, E2, . . . , EN . The central agent C engages in 64

a sequence of N sub-negotiations, each conducted indepen- 65

dently with an edge agent Ei in the fixed order. This setting is 66

particularly relevant in scenarios where a central agent needs 67

to coordinate multiple partial agreements across independent 68

bilateral tracks [Florijn, 2024]. 69

Each sub-negotiation involves a set of m issues, denoted 70

as I1, I2, . . . , Im. Every issue Ij has a discrete domain of k 71

possible values, denoted as v1, v2, . . . , vk. 72

The joint bid of the center agent across all N sub- 73

negotiations is denoted as O = (o1, o2, . . . , oN ), where each 74

oi = (v
(i)
1 , v

(i)
2 , . . . , v

(i)
m ) is a tuple representing the agreed- 75

upon outcome in the i-th sub-negotiation, with v
(i)
j being the 76

selected value for issue Ij . Here, oi denotes a finalized agree- 77

ment between C and Ei, while bi denotes a tentative bid that 78

is currently being proposed or responded to and has not yet 79

become a final outcome. 80



Finally, the central agent maps the joint outcome O to a81

real-valued utility score using its utility function UC(O). The82

edge agent i, with the sub-negotiation result oi, receives a83

utility score denoted as UEi
(oi), where UEi

is the utility func-84

tion of agent Ei that maps the agreed bid oi to a real value85

utility.86

Outcome space. For edge agents, they only participate87

in a single sub-negotiation, each involving m issues with k88

discrete values per issue. Therefore, their outcome space is89

of size km + 1 (an additional special outcome representing90

no agreement). For the central agent, the joint outcome space91

is of size (km + 1)N .92

2.2 Handling Sequential One-to-Many93

Negotiations with a Predefined Order94

Dynamic Strategy Evolution. As the sequential negotia-95

tion progresses, the strategic positions of the center and edge96

agents evolve. In the earlier sub-negotiations, the center agent97

can afford to be more selective, as there are still many re-98

maining opportunities to reach favorable agreements. This99

gives the center agent room to adopt a stricter stance, while100

the edge agents are expected to make greater concessions in101

order to secure early deals.102

In contrast, during the later stages of the sequence, the103

center agent faces increasing pressure to finalize agreements,104

especially if previous sub-negotiations do not have suffi-105

cient outcomes. Consequently, the center agent becomes106

more flexible and willing to concede, while edge agents may107

tighten their demands.108

Algorithm 1 Preference Bids List in Sub-negotiation

Require: Current sub-negotiation index i, prefix agreements
(o1, . . . , oi−1), global outcome space O, utility function
UC , tolerance ε

Ensure: Preference Bids List at index i: pref list
1: // Select the candidates
2: Initialize util dict← {}
3: for all o ∈ O do
4: if o1:i−1 == (o1, . . . , oi−1) then
5: util dict[o]← UC(o)
6: end if
7: end for
8: max util← max(util dict.values)
9: candidates← {o | UC(o) ≥ max util− ε}

10: // Sort the candidates
11: for all o ∈ candidates do
12: // Given that o = (o1, . . . , oi−1, oi, oi+1, . . . , oN )
13: opessimistic ← (o1, . . . , oi−1, oi,None, . . . ,None)
14: score[o]← UC(o

pessimistic)
15: end for
16: Sort candidates in descending order of score
17: pref list← deduplicated oi from candidates
18: return pref list

Preference bids in sub-negotiation. As the center agent,109

before each sub-negotiation, we construct the set of all110

joint outcomes compatible with the current agreement pre-111

fix. To manage this efficiently, we maintain a dictionary112

util dict that stores the global utility UC(o) for each such 113

outcome o. 114

To reduce overhead and focus on promising outcomes, we 115

filter util dict to retain only those within a predefined 116

tolerance of the optimal utility. 117

We then rank the remaining candidates using a conserva- 118

tive estimate of their minimum attainable utility, assuming 119

the current sub-negotiation succeeds while all future ones fail. 120

This prioritizes both global potential and local robustness. 121

Finally, we derive a preference list over offers in the current 122

sub-negotiation from the sorted candidates to guide bidding 123

and concession. The full procedure is shown in Algorithm 1. 124

Given a known utility function, if sub-negotiation out- 125

comes are independent, the center agent can simplify bid gen- 126

eration by focusing solely on the current sub-negotiation (size 127

km + 1), instead of the full space (size (km + 1)N ). This de- 128

composition reduces computational complexity, especially in 129

large one-to-many negotiation domains where the outcome 130

space grows exponentially [Koça et al., 2024]. 131

3 Implementation of the Center Agent 132

3.1 Bidding Strategy 133

The bidding strategy of the center agent dynamically adjusts 134

based on the current negotiation time and the utility value of 135

candidate bids. It mainly consists of the following two stages: 136

Early Stage (Relative Time t ≤ 0.9). During the early 137

phase of negotiation, the agent prioritizes bids that are opti- 138

mal or near-optimal. Specifically, candidate bids must have 139

utilities at least 95% of the best utility. The agent applies a 140

Softmax-like exponential weighting to the candidate bids, as- 141

signing higher probabilities to those with greater utility. This 142

approach also prevents overly predictable bidding that could 143

be exploited by opponents. 144

Late Stage (Relative Time t > 0.9). As negotiation ap- 145

proaches the final stage, the center agent gradually concedes, 146

adjusting bids to increase the likelihood of reaching an agree- 147

ment. The detailed approach is as follows: 148

• Opponent Preference Prediction. The agent predicts 149

the opponent’s utility for each candidate bid bi using an 150

opponent model Uopp(bi). For details of opponent mod- 151

elling, refer to Section 3.3. 152

• Composite Scoring of Candidate Bids. Each candidate 153

bid bi is assigned a composite score that balances the 154

agent’s own utility and the opponent’s estimated utility: 155

score(bi) = α× UC(o) + (1− α)× Uopp(bi)

Here, o = (o1, o2, . . . , oi−1, bi, None, . . . , None) 156

represents the partially constructed joint bid, where 157

o1, . . . , oi−1 are agreements already reached, bi is the 158

current candidate bid, and the None denotes underter- 159

mined bids for future sub-negotiations. 160

The concession weight α is a time-dependent parameter, 161

defined by the exponential decay function α = e−2t, 162

where t represents the relative negotiation time. 163

As time progresses, α decreases, gradually shifting the 164

agent’s focus from maximizing its own utility toward ac- 165

commodating the opponent’s preferences. 166



• Bid Selection Strategy. The agent selects the final bid167

b∗ by performing a weighted random sampling over the168

candidate bids according to their composite scores.169

b∗ ∼ P (bi) ∝ score(bi)

This concession strategy based on opponent-modelling170

better balances the interests of both parties. This approach171

steers bids toward mutually acceptable agreements, prevent-172

ing concessions that provide no benefit to the opponent, and173

thereby increasing the possibility of reaching a deal.174

3.2 Acceptance Strategy175

The center agent’s response to an incoming offer depends pri-176

marily on the current negotiation time and the offer’s utility177

relative to the agent’s preferences.178

Early Stage (Relative Time t ≤ 0.9). At the early179

stage, the agent only accepts offers that provide a high util-180

ity—specifically, those that reach at least 95% of the maxi-181

mum utility expected in the current sub-negotiation.182

Late Stage Response (Relative Time t > 0.9). In the final183

stage of negotiation, the center agent adopts an acceptance184

strategy that allows flexible concessions to avoid deadlock.185

The decision logic is outlined as follows:186

• Immediate Acceptance from Preference List. If the187

received offer appears in the center agent’s pref list,188

it is accepted immediately.189

• Dynamic Utility Threshold. If the offer is not on the190

preference list, the agent computes its utility and com-191

pares it against a dynamically adjusted threshold. This192

threshold is calculated as follows:193

Umin = 0.6× Umax ×
(
1− 0.5× i

N

)
194

threshold(t) = Umin + (Umax − Umin) · (1− (t′)0.4)

where:195

– t′ = t−0.9
1−0.9 ∈ [0, 1] is the re-normalized time,196

– Umax is the maximum utility of bids in197

pref list,198

– i is the index of the current sub-negotiation,199

– N is the total number of sub-negotiations, i
N ∈200

[0, 1] represents the relative progress in the overall201

negotiation sequence.202

As time progresses, the threshold gradually decreases,203

allowing acceptance of lower-utility offers to increase204

the chance of agreement.205

• Final Decision. If the utility of the offer exceeds the206

computed threshold, the offer is accepted. Otherwise, it207

is rejected.208

Overall, this strategy balances a strong preference for high209

utility early on with an increasing willingness to concede and210

reach agreement as time progresses, while concessions ac-211

cording to the importance of each sub-negotiation.212

3.3 Opponent Modeling 213

Opponent modeling plays a crucial role in automated negoti- 214

ation [Baarslag et al., 2016]. To predict the opponent’s utility 215

function during multi-issue negotiation, we adopt a Bayesian 216

inference framework that incrementally estimates a linearly 217

weighted utility model. In sub-negotiation i, given an offer 218

oi = (v
(i)
1 , v

(i)
2 , . . . , v

(i)
m ), the predicted opponent utility is 219

defined as: 220

Ûopp(oi) =

m∑
j=1

wj
opp · vjopp(vj),

where wj
opp denotes the estimated weight of issue j, and 221

vjopp(vj) ∈ [0, 1] represents the predicted utility of option vj 222

within that issue. 223

We design a set of likelihood functions based on commonly 224

observed behavioral consistency assumptions, such as mono- 225

tonic concession trends, early-stage utility concentration, and 226

preference-indicative response behaviors. These behavioral 227

models are encoded into a unified likelihood term Lbehav, 228

which is combined with a prior distribution P (θ) over util- 229

ity parameters to form the posterior strength: 230

pt ∝ Lbehav · P (θ),

where pt reflects the confidence of a candidate utility func- 231

tion at time t, conditioned on the opponent’s observed behav- 232

ior. 233

This posterior is used to guide the iterative refinement of 234

option-level utility estimates. For each option v
(i)
j in issue j, 235

we apply the following update rule: 236

vnew = vold + pt ·∆,

where ∆ captures the directional correction derived from 237

observed frequencies, behavioral patterns, or pairwise com- 238

parisons, and pt controls the update magnitude based on pos- 239

terior confidence. 240

Through this inference framework, the agent continuously 241

learns and updates its estimation of the opponent’s utility 242

function, thereby supporting adaptive bidding and response 243

decisions throughout the negotiation process. 244

4 Implementation of the Edge Agent 245

4.1 Bidding Strategy 246

The preprocessing logic of the edge agent is similar to that 247

of the center agent. The edge agent enumerates the outcome 248

space of the sub-negotiation, which constitutes its entire ne- 249

gotiation. 250

When bidding, it then identifies all bids whose utilities are 251

close to the maximum value and selects among them using a 252

Softmax-weighted sampling strategy. 253

4.2 Acceptance Strategy 254

The edge agent’s acceptance strategy is primarily governed 255

by the utility of the incoming offer and the current negotia- 256

tion time. It adopts a time-dependent concession mechanism, 257

becoming more flexible at the end of the negotiation. 258



Early Stage (Relative Time t ≤ 0.9). In the early phase259

of negotiation, the agent is highly selective. It only accepts260

offers that appear in its pre-computed list of top bids, re-261

ferred to as pref list, which represent outcomes with262

near-maximal utility.263

Late Stage (Relative Time t > 0.9). At the late stage,264

the edge agent initiates a flexible concession strategy. The265

process involves the following steps:266

• Dynamic Utility Threshold. The agent computes a267

threshold as follows:268

Umin = 0.6× Umax ×
2

π
arctan(i)

269

threshold(t) = Umin + (Umax − Umin) · (1− (t′)0.5)

where:270

– t′ = t−0.9
1−0.9 ∈ [0, 1] is the re-normalized time,271

– Umax is the maximum utility of bids in272

pref list,273

– i is the index of the edge agent in the sub-274

negotiation sequence, mentioning that an edge275

agent only knows its index, but does not know the276

amount of all sub-negotiations.277

As time progresses, the threshold decreases, enabling278

acceptance of offers with lower utility, particularly for279

agents positioned later in the sequence.280

• Final Decision. If the utility of the received offer ex-281

ceeds the calculated threshold, the agent accepts the of-282

fer. Otherwise, it is rejected.283

This strategy ensures early caution and late-stage flexibil-284

ity, while incorporating the agent’s position in the sequence285

to modulate concession levels appropriately.286

5 Experiments287

Metrics. The performance of agents is evaluated through a fi-288

nal tournament, including a range of scenarios to ensure gen-289

erality. Each agent’s final score A is computed as the average290

of its utility as center agent (µc) and as edge agent (µe):291

A =
µc + µe

2
Online and offline experiments. We conducted extensive292

offline experiments under various settings, varying the num-293

ber of edge agents, utility functions, and negotiation round294

limits. These helped evaluate the robustness and effective-295

ness of our strategies (the result is shown in Figure 1).296

In the official online testing system, our agent performed297

consistently well across diverse random scenarios, ranking298

among the top teams on the leaderboard.299

6 Conclusion300

This paper proposes an agent for one-to-many sequential ne-301

gotiations, employing dynamic concession strategies (incor-302

porating both temporal factors and negotiation sequence posi-303

tioning) and a Bayesian-based opponent modelling approach.304

It achieves efficient coordination in both center agent (global305

Figure 1: Offline experiment results.

utility optimization) and edge agent (local utility maximiza- 306

tion) scenarios. Experimental results demonstrate that this 307

method significantly improves agreement rates and overall 308

utility performance. 309
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